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Abstract

This study aims to highlight the association between
oxidative stress and cardiac autonomic neuropathy (CAN)
using machine learning algorithms for risk prediction.
Oxidative stress is a significant factor in chronic diseases.
Data from 2,621 participants were provided by the
DiabHealth diabetes complications screening clinic at
Charles Sturt University (CSU) for analysis, spanning
the years 2002 to 2015. The oxidative stress markers
considered in this study were 8-isoprostane, 8-hydroxy-2’-
deoxyguanosine (8-OHdG), reduced glutathione (GSH),
oxidized glutathione (GSSG) and glutathione redox
ratio (GSH/GSSG). Machine learning methods, including
Random Forest and Logistic Regression, were employed
to develop two multi-class and one binary model. For
ROC-AUC, all models achieved relatively high values
where ”Definite” in model 1 is 0.82, ”Normal” in model
2 is 0.81, and ”Abnormal” in model 3 is 0.81. The
findings underline the potential of integrating machine
learning methods in CAN prediction, offering substantial
improvements over traditional methods. By exploring
novel multi-class models and unveiling the capabilities of
the random forest classifier, this research establishes a
robust foundation for future investigations.

1. Introduction

Cardiovascular disease (CVD), mortality, and morbidity
with Diabetes Mellitus (DM) are significantly impacted
by cardiac autonomic neuropathy (CAN), a prevalent and
poorly understood diabetes-related condition. CAN is
usually inadequately diagnosed, particularly in clinical
practice as the majority of diabetic patients have
subclinical or asymptomatic CAN [1]. The capacity to
diagnose CAN at a subclinical level has advanced from
the initial five cardiac autonomic reflex tests (CARTs) that
are time-consuming including heart rate variability (HRV)
analysis, baroreflex sensitivity (BRS) tests, and cardiac
imaging [2]. Oxidative stress markers, mitochondrial

dysfunction, and high cholesterol levels have all been
shown to contribute to the development of CAN [3, 4].

The main focus of this study is on oxidative stress
markers since they are easy to assess. Urinary
8-isoprostane and 8-hydroxy-2’-deoxyguanosine (8-OHdG)
are commonly used for assessing oxidative stress in
diabetes [2]. In diabetic patients with CAN, these markers
are elevated, indicating the of oxidative stress in the
development of the disease. Glutathione (GSH) and
its oxidized form, GSSG, constitute another significant
antioxidant system. GSH depletion and higher GSSG
levels are associated with CAN and diabetes [5].

The traditional technique for CAN diagnosis contains
five tests based on heart rate (HR) and blood pressure (BP)
responses [1]. These tests consist of the HR response to
(1) deep breathing, (2) standing from a supine position,
(3) the Valsalva maneuver, and blood pressure response to
(4) standing, and (5) sustained handgrip [2]. The methods
used to conduct these tests and their normal, borderline,
and abnormal values are presented in Table 1.

In this study several machine learning methods have
been used to develop models for CAN diagnosis and
prediction. These include Random Forest (RF), Logistics
Regression (LR), K-Nearest Neighbors (KNN), Support
Vector Machines (SVMs), and Gradient Boosting (GB)
[6]. Among the most used measures of machine learning
performance are accuracy, precision, recall, F1 score,
and area under the receiver operating characteristic curve
(ROC-AUC).

This study is motivated by the need to replace traditional
CAN testing methods, which require physical movement
that may not be feasible for some patients. The aim
is to highlight the association between oxidative stress
and CAN using machine learning algorithms for risk
prediction.

2. Methodology

Figure 1 illustrates the methodology followed in this
paper. The dataset consists of 2621 patient entries from the
year 2002 to 2015. The target variable was created using
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Table 1: Values of cardiovascular autonomic function tests

Test Normal Borderline Abnormal
HR response to deep breathing (beats/min) ≥ 15 11− 14 ≤ 10
HR response to standing (30:15 ratio) ≥ 1.04 1.01− 1.03 ≤ 1.00
HR response to Valsalva manoeuvre ≥ 1.21 - ≤ 1.20
BP response to standing (mmHg) ≤ 10 11− 29 ≥ 30
BP response to sustained handgrip (mmHg) ≥ 16 11− 15 ≤ 10

Figure 1: Methodology Flow

a rule-based method, resulting in a distribution of Normal:
862, atypical: 514, Early: 997, Severe: 108, and Definite:
140.

CAN severity is set as follows: Each test in table 1
is considered as normal, borderline, or abnormal based
on the obtained value. Five classes of CAN severity
are established; normal, early, definite, severe, and
atypical. Table 2 describes the classifications based
on test conditions. As described in Table 3, two
multi-class models and a binary model are considered
in this study. In our primary approach (Model 1), all
distinct stages of CAN are modeled separately, capturing
the progression from Normal to Severe involvement. We
further explore two alternative modeling frameworks. In
Model 2, we combine ’Early’ and ’Definite’ involvements
into a single ’Moderate’ category, providing a three-class
representation. For Model 3, we adopt a binary
classification perspective, merging ’Early’, ’Definite’, and

Table 2: Patient classification based on test conditions

CAN stage HR & BP Tests
Normal All tests normal or one borderline
Early One of the three heart rate tests abnormal or

two borderline
Definite Two or more of the heart rate tests abnormal
Severe Two or more of the heart rate tests abnormal,

plus one or both of the blood pressure tests
abnormal or both borderline

Atypical Any other combination

’Severe’ involvements into a unified ’Abnormal’ category,
juxtaposes against the ’Normal’ class. This enables us to
evaluate the models’ efficacy across varying granularity
levels.

Table 3: Models Definition

Models CAN stages Definition
Model 1 4 Normal, Early, Severe, and

Definite
Model 2 3 Normal, Early, Moderate

(Definite and Severe)
Model 3
(Binary)

2 Normal, Abnormal (Early,
Definite, and Severe)

The classification methods applied to the data set in
Python are the following; LR calculates the probability
of a patient having CAN based on the values of the
predictor variables, i.e., oxidative stress markers. SVM
algorithm works by finding the hyperplane that maximizes
the margin between classes in the feature space. KNN,
RF and GB are utilized to classify the stage of CAN
for a patient, based on the oxidative stress markers. All
methods are used for testing models 1, 2, and 3. The
performance of the classification models is evaluated using
a suite of metrics, including accuracy, precision, recall,
F1-score, and ROC-AUC. In addition to these metrics,
5-fold cross-validation is used to assess the robustness of
the models. The model is trained on 80% of the data and
tested on the remaining 20%.
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3. Results

This study predicted CAN severity based on the results
of the five CARTs using multiple classifiers. Table 4
shows the classifier accuracy of Model 1. The RF classifier
achieved the highest accuracy of 0.6487 (± 0.0120).
Given the superior performance of the RF classifier, it
was selected for further modeling. According to the
RF classifier analysis, all features played a significant
role in determining CAN stages. ”u-8-OHdG” scored
approximately 22.78%, making it the most influential
element. However, the differences in importance among
the features were relatively small.

Table 4: Accuracies of different classifiers using 5-fold
cross-validation

Classifier Accuracy
LR 0.4944 (± 0.0219)
SVM 0.5323 (± 0.0131)
KNN 0.6241 (± 0.0104)
GB 0.6166 (± 0.0218)
RF 0.6487 (± 0.0120)

Evaluating the classifier performance on the testing
dataset, it exhibited an accuracy of 65.64%. The precision
metrics were: 68% for ”Normal”, 65% for ”Early”, 53%
for ”Definite”, and 69% for ”Severe”. The recall for
”Definite” stood at 28%, while ”Early” and ”Normal”
stages exhibited recalls of 73% and 67%, respectively. The
”Severe” stage achieved a recall of 46%. F1-Score trends
mirrored these figures, highlighting potential limitations in
the precise identification of the ”Definite” stage.

Further insights can be drawn from the ROC-AUC for
each CAN stage, where ”Normal”, ”Early”, ”Definite”,
and ”Severe” were found to be 0.81, 0.73, 0.82, and 0.76
respectively, as illustrated in Figure 2. These ROC-AUC
values emphasize the classifier’s strong capability to
discriminate between positive and negative instances for
each stage, especially for the ”Definite” stage, despite its
earlier noted limitations.

The classifier exhibited notable accuracy in identifying
”Normal” and ”Early ”, with 114 and 143 correct
predictions, respectively. Figure 3(a) shows the confusion
matrix for the RF classifier. However, distinctions between
adjacent stages proved challenging, especially discerning
”Normal” from ”Early ”. The ”Severe ” stage saw 11
accurate identifications.

To investigate the RF classifier performance for different
groupings, a multi-class model and a binary model were
created. As mentioned previously, the four-class model
acts as the baseline model but achieves low accuracy.
For Model 2, performance significantly improved with
an accuracy of 71%. The ROC-AUC for ”Normal”,
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Figure 2: Model 1 - ROC-AUC
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Figure 3: Confusion matrix for Random Forests classifier

”Moderate”, and ”Sever” were 0.81, 0.78 and 0.76
respectively as shown in Figure 4. This suggest that the
fusion of ’Definite’ and ’Severe’ into ’Moderate’ seems
to aid in achieving a more discernible differentiation
between stages. For Model 3, which comprises a binary
classification of CAN stages into Normal and Abnormal,
the RF classifier achieved an accuracy of 74.40%. The
precision, recall, and F1-score for the Normal class stand
at 0.72, 0.62, and 0.66 respectively. In contrast, the
Abnormal class has values of 0.76, 0.84, and 0.80 for the
same metrics, respectively. As shown in figure 3(b) the
confusion matrix indicates that 104 out of 171 Normal
instances were correctly identified, while the Abnormal
class saw a higher true positive rate with 210 out of 251
instances being accurately classified. Comparatively, the
binary model outperforms Model 1 and Model 2 in terms
of overall accuracy. The distinction between the Normal
and Abnormal classes in Model 3 seems to enable better
generalization. Notably, the Abnormal class in Model 3
has a higher recall than both the merged Moderate category
in Model 2 and the separate stages in Model 1. Figure
5 assess the classifier’s performance in distinguishing
between ’Normal’ and ’Abnormal’ CAN stages. A notable
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Figure 4: Model 2 -ROC-AUC

ROC-AUC of 0.81 is achieved, which suggests that our
classifier possesses a commendable ability to discern
between these two stages.
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Figure 5: Model 3 - ROC-AUC

4. Discussion and Conclusion

In this study, the performance of various machine
learning classifiers were explored, including LR, SVM,
KNN, RF, and GB. The results of all experiments showed
that the best accuracy was obtained by the RF classifier on
the binary model (Model 3). For ROC-AUC, all models
achieved relatively high values where ”Definite” in model
1 is 0.82, ”Normal” in model 2 is 0.81, and ”Abnormal” in
model 3 is 0.81. These values indicate that the progression
of CAN is highly associated with oxidative stress markers.
Some factors, such as patient age, gender, comorbidities,
and medications, may increase the ROC-AUC percentage
obtained in our study if they were considered [5].

The findings of this study support the results of previous
studies that used machine learning methods for CAN
detection using CARTs. As the RF classifier had the
best performance compared to other models. Abdalrada
et al., [7] obtained an accuracy of 94.1% and ROC
0.980 when adding HRV attributes to CAN classification.

Moreover, Rashid et al., [8] obtained an accuracy of
98.67% by including the patient demographic (gender),
clinical, and laboratory profiles for CAN testing. These
studied included different attributes than our study, as
we only used oxidative stress markers. Future studies
should consider other markers and attributes such as HRV
attributes and demographic profiles to obtain better results.
Moreover, testing each oxidative stress marker separately
should enhance the accuracy.
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